enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    If the resistance is not constant, the previous equation cannot be called Ohm's law, but it can still be used as a definition of static/DC resistance. [4] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current.

  3. Volt-ampere - Wikipedia

    en.wikipedia.org/wiki/Volt-ampere

    In direct current (DC) circuits, this product is equal to the real power, measured in watts. [3] The volt-ampere is dimensionally equivalent to the watt: in SI units, 1 V⋅A = 1 W. VA rating is most used for generators and transformers, and other power handling equipment, where loads may be reactive (inductive or capacitive).

  4. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    Introducing the constant of proportionality, the resistance, [14] one arrives at the usual mathematical equation that describes this relationship: [15] =, where I is the current through the conductor in units of amperes , V is the potential difference measured across the conductor in units of volts , and R is the resistance of the conductor in ...

  5. Resistor - Wikipedia

    en.wikipedia.org/wiki/Resistor

    At any instant, the power P (watts) consumed by a resistor of resistance R (ohms) is calculated as: = = = where V (volts) is the voltage across the resistor and I (amps) is the current flowing through it. Using Ohm's law, the two other forms can be derived. This power is converted into heat which must be dissipated by the resistor's package ...

  6. Volt - Wikipedia

    en.wikipedia.org/wiki/Volt

    At that time, the volt was defined as the potential difference [i.e., what is nowadays called the "voltage (difference)"] across a conductor when a current of one ampere dissipates one watt of power. The "international volt" was defined in 1893 as 1 ⁄ 1.434 of the emf of a Clark cell .

  7. Output impedance - Wikipedia

    en.wikipedia.org/wiki/Output_impedance

    At this point, the load resistance and internal resistance are equal. It can more accurately be described by keeping track of the voltage vs current curves for various loads, and calculating the resistance from Ohm's law. (The internal resistance may not be the same for different types of loading or at different frequencies, especially in ...

  8. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  9. Motor constants - Wikipedia

    en.wikipedia.org/wiki/Motor_constants

    is the resistive power loss (SI unit: watt) The motor constant is winding independent (as long as the same conductive material is used for wires); e.g., winding a motor with 6 turns with 2 parallel wires instead of 12 turns single wire will double the velocity constant, K v {\displaystyle K_{\text{v}}} , but K M {\displaystyle K_{\text{M ...