Search results
Results from the WOW.Com Content Network
a cm = acceleration of the center of mass v cm = velocity of the center of mass τ = total torque acting about the center of mass I cm = moment of inertia about the center of mass ω = angular velocity of the body α = angular acceleration of the body
Centrifugal force has also played a role in debates in classical mechanics about detection of absolute motion. Newton suggested two arguments to answer the question of whether absolute rotation can be detected: the rotating bucket argument, and the rotating spheres argument. [5]
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of ...
In classical mechanics, the Euler acceleration (named for Leonhard Euler), also known as azimuthal acceleration [8] or transverse acceleration [9] is an acceleration that appears when a non-uniformly rotating reference frame is used for analysis of motion and there is variation in the angular velocity of the reference frame's axis. This article ...
Y th : theoretical specific supply; H t : theoretical head pressure; g: gravitational acceleration For the case of a Pelton turbine the static component of the head is zero, hence the equation reduces to: = ().
Clairaut's theorem characterizes the surface gravity on a viscous rotating ellipsoid in hydrostatic equilibrium under the action of its gravitational field and centrifugal force. It was published in 1743 by Alexis Claude Clairaut in a treatise [ 1 ] which synthesized physical and geodetic evidence that the Earth is an oblate rotational ellipsoid .
In classical mechanics, the central-force problem is to determine the motion of a particle in a single central potential field.A central force is a force (possibly negative) that points from the particle directly towards a fixed point in space, the center, and whose magnitude only depends on the distance of the object to the center.
Eliminating the angular velocity dθ/dt from this radial equation, [47] ¨ = +. which is the equation of motion for a one-dimensional problem in which a particle of mass μ is subjected to the inward central force −dV/dr and a second outward force, called in this context the (Lagrangian) centrifugal force (see centrifugal force#Other uses of ...