enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Histogram - Wikipedia

    en.wikipedia.org/wiki/Histogram

    The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins). Thus, if we let n be the total number of observations and k be the total number of bins, the histogram data m i meet the following conditions:

  3. Scott's rule - Wikipedia

    en.wikipedia.org/wiki/Scott's_Rule

    Scott's rule is widely employed in data analysis software including R, [2] Python [3] and Microsoft Excel where it is the default bin selection method. [ 4 ] For a set of n {\displaystyle n} observations x i {\displaystyle x_{i}} let f ^ ( x ) {\displaystyle {\hat {f}}(x)} be the histogram approximation of some function f ( x ) {\displaystyle f ...

  4. Freedman–Diaconis rule - Wikipedia

    en.wikipedia.org/wiki/Freedman–Diaconis_rule

    where ⁡ is the interquartile range of the data and is the number of observations in the sample . In fact if the normal density is used the factor 2 in front comes out to be ∼ 2.59 {\displaystyle \sim 2.59} , [ 4 ] but 2 is the factor recommended by Freedman and Diaconis.

  5. Sturges's rule - Wikipedia

    en.wikipedia.org/wiki/Sturges's_rule

    Sturges's rule [1] is a method to choose the number of bins for a histogram.Given observations, Sturges's rule suggests using ^ = + ⁡ bins in the histogram. This rule is widely employed in data analysis software including Python [2] and R, where it is the default bin selection method.

  6. V-optimal histograms - Wikipedia

    en.wikipedia.org/wiki/V-optimal_histograms

    A v-optimal histogram is based on the concept of minimizing a quantity which is called the weighted variance in this context. [1] This is defined as = =, where the histogram consists of J bins or buckets, n j is the number of items contained in the jth bin and where V j is the variance between the values associated with the items in the jth bin.

  7. Bin (computational geometry) - Wikipedia

    en.wikipedia.org/wiki/Bin_(computational_geometry)

    All the candidates are represented also as 2D arrays. The size of a candidate's array is the number of bins it intersects. For example, in the top figure, candidate B has 6 elements arranged in a 3 row by 2 column array because it intersects 6 bins in such an arrangement. Each bin contains the head of a singly linked list. If a candidate ...

  8. Data and information visualization - Wikipedia

    en.wikipedia.org/wiki/Data_and_information...

    cluster heat map: where magnitudes are laid out into a matrix of fixed cell size whose rows and columns are categorical data. For example, the graph to the right. spatial heat map: where no matrix of fixed cell size for example a heat-map. For example, a heat map showing population densities displayed on a geographical map; Stripe graphic ...

  9. Data binning - Wikipedia

    en.wikipedia.org/wiki/Data_binning

    Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin , are replaced by a value representative of that interval, often a central value ( mean or median ).