Search results
Results from the WOW.Com Content Network
For a discussion on the vulnerabilities of Facenet-based face recognition algorithms in applications to the Deepfake videos: Pavel Korshunov; Sébastien Marcel (2022). "The Threat of Deepfakes to Computer and Human Visions" in: Handbook of Digital Face Manipulation and Detection From DeepFakes to Morphing Attacks (PDF). Springer. pp. 97– 114.
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.
To search for the object in the entire frame, the search window can be moved across the image and check every location with the classifier. This process is most commonly used in image processing for object detection and tracking, primarily facial detection and recognition. The first cascading classifier was the face detector of Viola and Jones ...
2. where is the face located? Face-detection algorithms focus on the detection of frontal human faces. It is analogous to image detection in which the image of a person is matched bit by bit. Image matches with the image stores in database. Any facial feature changes in the database will invalidate the matching process. [3]
The technique used in creating eigenfaces and using them for recognition is also used outside of face recognition: handwriting recognition, lip reading, voice recognition, sign language/hand gestures interpretation and medical imaging analysis. Therefore, some do not use the term eigenface, but prefer to use 'eigenimage'.
Face hallucination algorithms that are applied to images prior to those images being submitted to the facial recognition system use example-based machine learning with pixel substitution or nearest neighbour distribution indexes that may also incorporate demographic and age related facial characteristics. Use of face hallucination techniques ...
The algorithm uses the difference between the current estimate of appearance and the target image to drive an optimization process. By taking advantage of the least squares techniques, it can match to new images very swiftly. It is related to the active shape model (ASM).
Learning-based fitting methods use machine learning techniques to predict the facial coefficients. These can use linear regression, nonlinear regression and other fitting methods. [6] In general, the analytic fitting methods are more accurate and do not need training, while the learning-based fitting methods are faster, but need to be trained. [7]