enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decimal data type - Wikipedia

    en.wikipedia.org/wiki/Decimal_data_type

    Most decimal fractions (or most fractions in general) cannot be represented exactly as a fraction with a denominator that is a power of two. For example, the simple decimal fraction 0.3 (3 ⁄ 10) might be represented as 5404319552844595 ⁄ 18014398509481984 (0.299999999999999988897769…). This inexactness causes many problems that are ...

  3. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  4. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    This decimal format can also represent any binary fraction a/2 m, such as 1/8 (0.125) or 17/32 (0.53125). More generally, a rational number a / b , with a and b relatively prime and b positive, can be exactly represented in binary fixed point only if b is a power of 2; and in decimal fixed point only if b has no prime factors other than 2 and/or 5.

  5. Decimal separator - Wikipedia

    en.wikipedia.org/wiki/Decimal_separator

    Any such symbol can be called a decimal mark, decimal marker, or decimal sign. Symbol-specific names are also used; decimal point and decimal comma refer to a dot (either baseline or middle ) and comma respectively, when it is used as a decimal separator; these are the usual terms used in English, [ 1 ] [ 2 ] [ 3 ] with the aforementioned ...

  6. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    Each of these number systems is a positional system, but while decimal weights are powers of 10, the octal weights are powers of 8 and the hexadecimal weights are powers of 16. To convert from hexadecimal or octal to decimal, for each digit one multiplies the value of the digit by the value of its position and then adds the results. For example:

  7. Power of two - Wikipedia

    en.wikipedia.org/wiki/Power_of_two

    The only known powers of 2 with all digits even are 2 1 = 2, 2 2 = 4, 2 3 = 8, 2 6 = 64 and 2 11 = 2048. [12] The first 3 powers of 2 with all but last digit odd is 2 4 = 16, 2 5 = 32 and 2 9 = 512. The next such power of 2 of form 2 n should have n of at least 6 digits.

  8. Champernowne constant - Wikipedia

    en.wikipedia.org/wiki/Champernowne_constant

    The definition of the Champernowne constant immediately gives rise to an infinite series representation involving a double sum, = = = (+), where () = = is the number of digits between the decimal point and the first contribution from an n-digit base-10 number; these expressions generalize to an arbitrary base b by replacing 10 and 9 with b and b − 1 respectively.

  9. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    Thus only 23 fraction bits of the significand appear in the memory format, but the total precision is 24 bits (equivalent to log 10 (2 24) ≈ 7.225 decimal digits) for normal values; subnormals have gracefully degrading precision down to 1 bit for the smallest non-zero value.