Search results
Results from the WOW.Com Content Network
The angle is typically measured in degrees from the mark of number 12 clockwise. The time is usually based on a 12-hour clock. A method to solve such problems is to consider the rate of change of the angle in degrees per minute. The hour hand of a normal 12-hour analogue clock turns 360° in 12 hours (720 minutes) or 0.5° per minute.
New Mersenne conjecture: for any odd natural number, if any two of the three conditions = or =, is prime, and (+) / is prime are true, then the third condition is also true. Polignac's conjecture : for all positive even numbers n {\displaystyle n} , there are infinitely many prime gaps of size n {\displaystyle n} .
The Babylonian numeral system, base 60, was the first positional system to be developed, and its influence is present today in the way time and angles are counted in tallies related to 60, such as 60 minutes in an hour and 360 degrees in a circle.
An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x: r n = x . {\displaystyle r^{n}=x.} Every positive real number x has a single positive n th root, called the principal n th root , which is written x n {\displaystyle {\sqrt[{n}]{x}}} .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
It can be shown that the nth root of λ (a Liouville number) is a U-number of degree n. [33] This construction can be improved to create an uncountable family of U-numbers of degree n. Let Z be the set consisting of every other power of 10 in the series above for λ. The set of all subsets of Z is uncountable.
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b. For n equal to 2, the equation has infinitely many solutions, the Pythagorean triples.)