Search results
Results from the WOW.Com Content Network
A diol can be converted to cyclic ether by using an acid catalyst, this is diol cyclization. Firstly, it involves protonation of the hydroxyl group. Then, followed by intramolecular nucleophilic substitution, the second hydroxyl group attacks the electron deficient carbon.
Particularly common spiro compounds are ketal (acetal) formed by condensation of cyclic ketones and diols and dithiols. [15] [16] [17] A simple case is the acetal 1,4-dioxaspiro[4.5]decane from cyclohexanone and glycol. Cases of such ketals and dithioketals are common.
Like BPA, CBDO is a diol with a structure suitable for making polyesters. CBDO’s C 4 ring is sufficiently rigid to prevent the two OH groups from forming cyclic structures. Unlike BPA, there is no current evidence of carcinogenic or toxic effects from CBDO-based consumer products.
In cyclic systems, the reaction presents more features of interest. In these reactions, the stereochemistry of the diol plays a crucial role in deciding the major product. An alkyl group which is situated trans- to the leaving –OH group may migrate to the carbocation center, but cis- alkyl groups migrate at a very low rate.
Two ketyl groups react in a coupling reaction yielding a vicinal diol with both hydroxyl groups deprotonated. Addition of water or another proton donor gives the diol. With magnesium as an electron donor, the initial reaction product is a 5-membered cyclic compound with the two oxygen atoms coordinated to the oxidized Mg 2+ ion.
General structure of a 1,2-acetonide. The diol is shown in blue, the acetone part in red. In organic chemistry, an acetonide is the functional group composed of the cyclic ketal of a diol with acetone. The more systematic name for this structure is an isopropylidene ketal. Acetonide is a common protecting group for 1,2- and 1,3-diols. [1]
The reaction mechanism involves the formation of a cyclic thiocarbonate from the diol and thiophosgene.The second step involves treatment with trimethyl phosphite, which attacks the sulfur atom, producing S=P(OMe) 3 (driven by the formation of a strong P=S double bond) and leaving a carbene. [6]
The Evans–Tishchenko reaction is the diastereoselective reduction of β-hydroxy ketones to the corresponding 1,3-anti diol monoesters. The reaction employs a Lewis acid, often samarium iodide, and an aldehyde. It was first described in 1990 by David A. Evans and Amir Hoveyda, as a development of the well-known Tishchenko reaction discovered ...