Search results
Results from the WOW.Com Content Network
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [1] [2] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...
All heterotrophs (except blood and gut parasites) have to convert solid food into soluble compounds which are capable of being absorbed (digestion). Then the soluble products of digestion for the organism are being broken down for the release of energy (respiration). All heterotrophs depend on autotrophs for their nutrition. Heterotrophic ...
A heterotroph (/ ˈ h ɛ t ər ə ˌ t r oʊ f,-ˌ t r ɒ f /; [3] [4] from Ancient Greek ἕτερος (héteros) 'other' and τροφή (trophḗ) 'nutrition') is an organism that cannot produce its own food, instead taking nutrition from other sources of organic carbon, mainly plant or animal matter. In the food chain, heterotrophs are ...
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
Perhaps the most widely acclaimed example of a trophic mutualism was the discovery of the leafcutter ant that engage in trophic mutualism with a fungus. [9] These ants cultivate a certain type of fungus by providing it with leaves and other nutrients. In turn, the ants will feed on a special nutrient that is only created by the fungus they nurture.
Heterotrophs contribute to secondary production and it is dependent on primary productivity and the net primary products. [16] Secondary production is the energy that herbivores and decomposers use and thus depends on primary productivity. [ 16 ]
Photoheterotrophs generate ATP using light, in one of two ways: [6] [7] they use a bacteriochlorophyll-based reaction center, or they use a bacteriorhodopsin.The chlorophyll-based mechanism is similar to that used in photosynthesis, where light excites the molecules in a reaction center and causes a flow of electrons through an electron transport chain (ETS).
The productivity of autotrophs, such as plants, is called primary productivity, while the productivity of heterotrophs, such as animals, is called secondary productivity. [ 1 ] The productivity of an ecosystem is influenced by a wide range of factors, including nutrient availability, temperature, and water availability.