enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Instance-based learning - Wikipedia

    en.wikipedia.org/wiki/Instance-based_learning

    Examples of instance-based learning algorithms are the k-nearest neighbors algorithm, kernel machines and RBF networks. [2]: ch. 8 These store (a subset of) their training set; when predicting a value/class for a new instance, they compute distances or similarities between this instance and the training instances to make a decision.

  3. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with one codebase." [2] Keras 3 will be the default Keras version for TensorFlow 2.16 onwards, but Keras 2 can still ...

  4. Probabilistic neural network - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_neural_network

    A probabilistic neural network (PNN) [1] is a feedforward neural network, which is widely used in classification and pattern recognition problems.In the PNN algorithm, the parent probability distribution function (PDF) of each class is approximated by a Parzen window and a non-parametric function.

  5. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    ML involves the study and construction of algorithms that can learn from and make predictions on data. [3] These algorithms operate by building a model from a training set of example observations to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Decision stump - Wikipedia

    en.wikipedia.org/wiki/Decision_stump

    A decision stump is a machine learning model consisting of a one-level decision tree. [1] That is, it is a decision tree with one internal node (the root) which is immediately connected to the terminal nodes (its leaves). A decision stump makes a prediction based on the value of just a single input feature. Sometimes they are also called 1 ...

  8. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    For example, the center of a circle moves by the same amount as the circle when shifted. [6] A nonequivariant is a property whose value does not change predictably under a transformation. For example, transforming a circle into an ellipse means that its perimeter can no longer be computed as π times the diameter.

  9. Zero-shot learning - Wikipedia

    en.wikipedia.org/wiki/Zero-shot_learning

    The name is a play on words based on the earlier concept of one-shot learning, in which classification can be learned from only one, or a few, examples. Zero-shot methods generally work by associating observed and non-observed classes through some form of auxiliary information, which encodes observable distinguishing properties of objects. [1]

  1. Related searches keras prediction one instance of learning example is called a program that uses

    keras python wikikeras name meaning
    keras wikipediaexamples of instance based learning