Search results
Results from the WOW.Com Content Network
"Mass/volume percentage" (or "% m/v") in biology, for mass per unit volume; incorrectly used to denote mass concentration (chemistry). See usage in biology Topics referred to by the same term
In chemistry, the mass concentration ρ i (or γ i) is defined as the mass of a constituent m i divided by the volume of the mixture V. [1]= For a pure chemical the mass concentration equals its density (mass divided by volume); thus the mass concentration of a component in a mixture can be called the density of a component in a mixture.
A related concept is one part per ten thousand, 1 / 10,000 .The same unit is also (rarely) called a permyriad, literally meaning "for (every) myriad (ten thousand)". [4] [5] If used interchangeably with basis point, the permyriad is potentially confusing because an increase of one basis point to a 10 basis point value is generally understood to mean an increase to 11 basis points; not ...
The volume of such a mixture is slightly less than the sum of the volumes of the components. Thus, by the above definition, the term "40% alcohol by volume" refers to a mixture of 40 volume units of ethanol with enough water to make a final volume of 100 units, rather than a mixture of 40 units of ethanol with 60 units of water.
Volume fraction, which is widely used in chemistry (commonly denoted as v/v), is defined as the volume of a particular component divided by the sum of all components in the mixture when they are measured separately. For example, to make 100 mL of 50% alc/vol ethanol solution, water would be added to 50 mL of ethanol to make up exactly 100 mL.
Its initial value is 1 (when v = 0); and as velocity approaches the speed of light (v → c) γ increases without bound (γ → ∞). α (Lorentz factor inverse) as a function of velocity—a circular arc. In the table below, the left-hand column shows speeds as different fractions of the speed of light (i.e. in units of c). The middle column ...
In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg −1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [ 12 ] and becomes standard by the end of the 1890s, with values usually cited in ...
For example, in the original work of Onsager [16] the thermodynamic forces include additional multiplier T, whereas in the Course of Theoretical Physics [17] this multiplier is omitted but the sign of the thermodynamic forces is opposite. All these changes are supplemented by the corresponding changes in the coefficients and do not affect the ...