Search results
Results from the WOW.Com Content Network
Meiosis undergoes two divisions resulting in four haploid daughter cells. Homologous chromosomes are separated in the first division of meiosis, such that each daughter cell has one copy of each chromosome. These chromosomes have already been replicated and have two sister chromatids which are then separated during the second division of ...
Meiosis generates genetic variation in the diploid cell, in part by the exchange of genetic information between the pairs of chromosomes after they align (recombination). Thus, on this view, [28] an advantage of meiosis is that it facilitates the generation of genomic diversity among progeny, allowing adaptation to adverse changes in the ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 5 January 2025. Cell division producing haploid gametes For the figure of speech, see Meiosis (figure of speech). For the process whereby cell nuclei divide to produce two copies of themselves, see Mitosis. For excessive constriction of the pupils, see Miosis. For the parasitic infestation, see Myiasis ...
A meiocyte is a type of cell that differentiates into a gamete through the process of meiosis. Through meiosis, the diploid meiocyte divides into four genetically different haploid gametes. [1] [2] The control of the meiocyte through the meiotic cell cycle varies between different groups of organisms.
Animals have life cycles with a single diploid multicellular phase that produces haploid gametes directly by meiosis. Male gametes are called sperm, and female gametes are called eggs or ova. In animals, fertilization of the ovum by a sperm results in the formation of a diploid zygote that develops by repeated mitotic divisions into a diploid ...
Prophase II of meiosis is very similar to prophase of mitosis. The most noticeable difference is that prophase II occurs with a haploid number of chromosomes as opposed to the diploid number in mitotic prophase. [12] [10] In both animal and plant cells chromosomes may de-condense during telophase I requiring them to re-condense in prophase II.
In cutaneous T-cell lymphoma meiosis proteins have been shown to be regulated with the cell cycle. [4] Lymphoma cell lines have also been noted to up-regulate meiosis specific genes with irradiation and a correlation with mitotic arrest and polyploidy has been noted. [5] The overall role of meiomitosis in cancer development and evolution has ...
The grasshopper Melanoplus femur-rubrum was exposed to an acute dose of X-rays during each individual stage of meiosis, and chiasma frequency was measured. [23] Irradiation during the leptotene-zygotene stages of meiosis (that is, prior to the pachytene period in which crossover recombination occurs) was found to increase subsequent chiasma ...