Search results
Results from the WOW.Com Content Network
In physics, a Galilean transformation is used to transform between the coordinates of two reference frames which differ only by constant relative motion within the constructs of Newtonian physics. These transformations together with spatial rotations and translations in space and time form the inhomogeneous Galilean group (assumed throughout ...
Lorentz transformations have a number of unintuitive features that do not appear in Galilean transformations. For example, they reflect the fact that observers moving at different velocities may measure different distances , elapsed times , and even different orderings of events , but always such that the speed of light is the same in all ...
Derivation of Lorentz transformation using time dilation and length contraction Now substituting the length contraction result into the Galilean transformation (i.e. x = ℓ ), we have: x ′ γ = x − v t {\displaystyle {\frac {x'}{\gamma }}=x-vt}
The Galilean transformations are replaced by Lorentz transformations. In all inertial frames, all laws of physics are the same. Both theories assume the existence of inertial frames. In practice, the size of the frames in which they remain valid differ greatly, depending on gravitational tidal forces.
In the fundamental branches of modern physics, namely general relativity and its widely applicable subset special relativity, as well as relativistic quantum mechanics and relativistic quantum field theory, the Lorentz transformation is the transformation rule under which all four-vectors and tensors containing physical quantities transform from one frame of reference to another.
In the special relativity, Lorentz transformations exhibit the symmetry of Minkowski spacetime by using a constant c as the speed of light, and a parameter v as the relative velocity between two inertial reference frames. Using the above conditions, the Lorentz transformation in 3+1 dimensions assume the form:
(The improper Lorentz transformations have determinant −1.) The subgroup of proper Lorentz transformations is denoted SO(1, 3). The subgroup of all Lorentz transformations preserving both orientation and direction of time is called the proper, orthochronous Lorentz group or restricted Lorentz group, and is denoted by SO + (1, 3). [a]
An overriding requirement on the descriptions in different frameworks is that they be consistent.Consistency is an issue because Newtonian mechanics predicts one transformation (so-called Galilean invariance) for the forces that drive the charges and cause the current, while electrodynamics as expressed by Maxwell's equations predicts that the fields that give rise to these forces transform ...