enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Federated learning - Wikipedia

    en.wikipedia.org/wiki/Federated_learning

    Federated learning (also known as collaborative learning) is a machine learning technique focusing on settings in which multiple entities (often referred to as clients) collaboratively train a model while ensuring that their data remains decentralized. [1]

  3. Equalized odds - Wikipedia

    en.wikipedia.org/wiki/Equalized_odds

    Equalized odds, [1] also referred to as conditional procedure accuracy equality and disparate mistreatment, is a measure of fairness in machine learning.A classifier satisfies this definition if the subjects in the protected and unprotected groups have equal true positive rate and equal false positive rate, [2] satisfying the formula:

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Federated learning is an adapted form of distributed artificial intelligence to training machine learning models that decentralizes the training process, allowing for users' privacy to be maintained by not needing to send their data to a centralized server. This also increases efficiency by decentralizing the training process to many devices.

  5. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  6. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Double Q-learning [23] is an off-policy reinforcement learning algorithm, where a different policy is used for value evaluation than what is used to select the next action. In practice, two separate value functions Q A {\displaystyle Q^{A}} and Q B {\displaystyle Q^{B}} are trained in a mutually symmetric fashion using separate experiences.

  7. Learning rate - Wikipedia

    en.wikipedia.org/wiki/Learning_rate

    In the adaptive control literature, the learning rate is commonly referred to as gain. [2] In setting a learning rate, there is a trade-off between the rate of convergence and overshooting. While the descent direction is usually determined from the gradient of the loss function, the learning rate determines how big a step is taken in that ...

  8. Multi-task learning - Wikipedia

    en.wikipedia.org/wiki/Multi-task_learning

    Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.

  9. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The machine learning task for knowledge graph embedding that is more often used to evaluate the embedding accuracy of the models is the link prediction. [ 1 ] [ 3 ] [ 5 ] [ 6 ] [ 7 ] [ 18 ] Rossi et al. [ 5 ] produced an extensive benchmark of the models, but also other surveys produces similar results.