Search results
Results from the WOW.Com Content Network
The shape of parenchyma cells varies with their function. In the spongy mesophyll of a leaf, parenchyma cells range from near-spherical and loosely arranged with large intercellular spaces, [2] to branched or stellate, mutually interconnected with their neighbours at the ends of their arms to form a three-dimensional network, like in the red ...
The epidermis is the outermost cell layer of the primary plant body. In some older works the cells of the leaf epidermis have been regarded as specialized parenchyma cells, [1] but the established modern preference has long been to classify the epidermis as dermal tissue, [2] whereas parenchyma is classified as ground tissue. [3]
The brain parenchyma refers to the functional tissue in the brain that is made up of the two types of brain cell, neurons and glial cells. [7] It is also known to contain collagen proteins. [8] Damage or trauma to the brain parenchyma often results in a loss of cognitive ability or even death.
Although sclereids are variable in shape, the cells are generally isodiametric, prosenchymatic, forked, or elaborately branched. They can be grouped into bundles, can form complete tubes located at the periphery, or can occur as single cells or small groups of cells within parenchyma tissues. An isolated sclereid cell is known as an idioblast.
It forms a protective covering on the leaf vein and consists of one or more cell layers, usually parenchyma. Loosely-arranged mesophyll cells lie between the bundle sheath and the leaf surface. The Calvin cycle is confined to the chloroplasts of these bundle sheath cells in C 4 plants. C 2 plants also use a variation of this structure. [1]
Palisade cells contain a high concentration of chloroplasts, particularly in the upper portion of the cell, making them the primary site of photosynthesis in the leaves of plants that contain them. Their vacuole also aids in this function: it is large and central, pushing the chloroplasts to the edge of the cell, maximising the absorption of ...
The phloem is the living portion of the vascular system of a plant, and serves to move sugars and photosynthate from source cells to sink cells. Phloem tissue is made of sieve elements and companion cells, and is surrounded by parenchyma cells. The sieve element cells work as the main player in transport of phloem sap.
Transfer cells are specialized parenchyma cells that have an increased surface area, due to infoldings of the plasma membrane. They facilitate the transport of sugars from a sugar source, mainly mature leaves, to a sugar sink, often developing leaves or fruits. They are found in nectaries of flowers and some carnivorous plants.