Ad
related to: fixed point arithmetic scale factor- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Loved by Teachers
Check out some of the great
feedback from teachers & parents.
- Teachers Try it Free
Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
A scale factor of 1 ⁄ 10 cannot be used here, because scaling 160 by 1 ⁄ 10 gives 16, which is greater than the greatest value that can be stored in this fixed-point format. However, 1 ⁄ 11 will work as a scale factor, because the maximum scaled value, 160 ⁄ 11 = 14. 54 , fits within this range.
A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition. [1] For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.
The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.
Signed binary angle measurement. Black is traditional degrees representation, green is a BAM as a decimal number and red is hexadecimal 32-bit BAM. In this figure the 32-bit binary integers are interpreted as signed binary fixed-point values with scaling factor 2 −31, representing fractions between −1.0 (inclusive) and +1.0 (exclusive).
The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.
The arithmetic is actually implemented in software, but with a one megahertz clock rate, the speed of floating-point and fixed-point operations in this machine were initially faster than those of many competing computers. The mass-produced IBM 704 followed in 1954; it introduced the use of a biased exponent.
Fixed-point arithmetic, for an alternative approach at computation with rational numbers (especially beneficial when the exponent range is known, fixed, or bound at compile time) IBM System z9 , the first CPU to implement IEEE 754-2008 decimal arithmetic (using hardware microcode)
Ad
related to: fixed point arithmetic scale factor