Search results
Results from the WOW.Com Content Network
William Delbert Gann (June 6, 1878 – June 18, 1955) or WD Gann, was a finance trader who developed the technical analysis methods like the Gann angles [1] [2] and the Master Charts, [3] [4] where the latter is a collective name for his various tools like the Spiral Chart (also called the Square of Nine), [5] [6] [7] the Hexagon Chart, [8] and the Circle of 360.
This amounts to finding an area of a region by first comparing it to the area of a second region, which can be "exhausted" so that its area becomes arbitrarily close to the true area. The proof involves assuming that the true area is greater than the second area, proving that assertion false, assuming it is less than the second area, then ...
It is also related to the densest circle packing of the plane, in which every circle is tangent to six other circles, which fill just over 90% of the area of the plane. The case when the problem is restricted to a square grid was solved in 1989 by Jaigyoung Choe who proved that the optimal figure is an irregular hexagon. [4] [5]
The honeycomb conjecture states that hexagonal tiling is the best way to divide a surface into regions of equal area with the least total perimeter. The optimal three-dimensional structure for making honeycomb (or rather, soap bubbles) was investigated by Lord Kelvin , who believed that the Kelvin structure (or body-centered cubic lattice) is ...
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line segment from the center to the midpoint of one of its sides.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
In geometric measure theory the area formula relates the Hausdorff measure of the image of a Lipschitz map, while accounting for multiplicity, to the integral of the Jacobian of the map. It is one of the fundamental results of the field that has connections, for example, to rectifiability and Sard's theorem .
The formula is credited to Heron (or Hero) of Alexandria (fl. 60 AD), [4] and a proof can be found in his book Metrica. Mathematical historian Thomas Heath suggested that Archimedes knew the formula over two centuries earlier, [ 5 ] and since Metrica is a collection of the mathematical knowledge available in the ancient world, it is possible ...