Search results
Results from the WOW.Com Content Network
An abstract syntax tree (AST) is a data structure used in computer science to represent the structure of a program or code snippet. It is a tree representation of the abstract syntactic structure of text (often source code) written in a formal language.
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
This is a list of well-known data structures. For a wider list of terms, see list of terms relating to algorithms and data structures. For a comparison of running times for a subset of this list see comparison of data structures.
This unsorted tree has non-unique values (e.g., the value 2 existing in different nodes, not in a single node only) and is non-binary (only up to two children nodes per parent node in a binary tree). The root node at the top (with the value 2 here), has no parent as it is the highest in the tree hierarchy.
Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies:
In computer science, an in-tree or parent pointer tree is an N-ary tree data structure in which each node has a pointer to its parent node, but no pointers to child nodes. When used to implement a set of stacks , the structure is called a spaghetti stack , cactus stack or saguaro stack (after the saguaro , a kind of cactus). [ 1 ]
Such a data structure is known as a treap or a randomized binary search tree. [11] Variants of the treap including the zip tree and zip-zip tree replace the tree rotations by "zipping" operations that split and merge trees, and that limit the number of random bits that need to be generated and stored alongside the keys.
The list starts out with a single node, the sentinel node which has the next and previous pointers point to itself. This condition determines if the list is empty. In a non-empty list, the sentinel node's next pointer gives the head of the list, and the previous pointer gives the tail of the list.