Search results
Results from the WOW.Com Content Network
Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. [1] Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption ...
Beginning with photosynthesis, water (blue) and carbon dioxide (white) from the air are taken in with solar energy (yellow), and are converted into plant energy (green). [ 7 ] 100×10 15 grams of carbon/year fixed by photosynthetic organisms, which is equivalent to 4×10 18 kJ/yr = 4×10 21 J/yr of free energy.
Plant ecophysiology is concerned largely with two topics: mechanisms (how plants sense and respond to environmental change) and scaling or integration (how the responses to highly variable conditions—for example, gradients from full sunlight to 95% shade within tree canopies—are coordinated with one another), and how their collective effect on plant growth and gas exchange can be ...
A germination rate experiment. Plant physiology is a subdiscipline of botany concerned with the functioning, or physiology, of plants. [1]Plant physiologists study fundamental processes of plants, such as photosynthesis, respiration, plant nutrition, plant hormone functions, tropisms, nastic movements, photoperiodism, photomorphogenesis, circadian rhythms, environmental stress physiology, seed ...
Heliotropism, a form of tropism, is the diurnal or seasonal motion of plant parts (flowers or leaves) in response to the direction of the Sun. The habit of some plants to move in the direction of the Sun, a form of tropism, was already known by the Ancient Greeks. They named one of those plants after that property Heliotropium, meaning "sun turn".
Plant physiology encompasses all the internal chemical and physical activities of plants associated with life. [155] Chemicals obtained from the air, soil and water form the basis of all plant metabolism. The energy of sunlight, captured by oxygenic photosynthesis and released by cellular respiration, is the basis of almost all life.
Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, sulfur cycle, nitrogen cycle, water cycle, phosphorus cycle, oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.
28.2% (sunlight energy collected by chlorophyll) → 68% is lost in conversion of ATP and NADPH to d-glucose, leaving; 9% (collected as sugar) → 35–40% of sugar is recycled/consumed by the leaf in dark and photo-respiration, leaving; 5.4% net leaf efficiency. Many plants lose much of the remaining energy on growing roots.