enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Relevance vector machine - Wikipedia

    en.wikipedia.org/wiki/Relevance_vector_machine

    In mathematics, a Relevance Vector Machine (RVM) is a machine learning technique that uses Bayesian inference to obtain parsimonious solutions for regression and probabilistic classification. [1] A greedy optimisation procedure and thus fast version were subsequently developed.

  3. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  4. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    Bayesian networks are a modeling tool for assigning probabilities to events, and thereby characterizing the uncertainty in a model's predictions. Deep learning and artificial neural networks are approaches used in machine learning to build computational models which learn from training examples. Bayesian neural networks merge

  5. Online machine learning - Wikipedia

    en.wikipedia.org/wiki/Online_machine_learning

    scikit-learn: Provides out-of-core implementations of algorithms for Classification: Perceptron, SGD classifier, Naive bayes classifier. Regression: SGD Regressor, Passive Aggressive regressor. Clustering: Mini-batch k-means. Feature extraction: Mini-batch dictionary learning, Incremental PCA.

  6. Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Bayes_classifier

    In statistical classification, the Bayes classifier is the classifier having the smallest probability of misclassification of all classifiers using the same set of features. [ 1 ] Definition

  7. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  8. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    Kernel SVMs are available in many machine-learning toolkits, including LIBSVM, MATLAB, SAS, SVMlight, kernlab, scikit-learn, Shogun, Weka, Shark, JKernelMachines, OpenCV and others. Preprocessing of data (standardization) is highly recommended to enhance accuracy of classification. [ 49 ]

  9. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels