Search results
Results from the WOW.Com Content Network
One of the popular examples in computer science is the mathematical models of various machines, an example is the deterministic finite automaton (DFA) which is defined as an abstract mathematical concept, but due to the deterministic nature of a DFA, it is implementable in hardware and software for solving various specific problems. For example ...
deterministic actions, which can be taken only one at a time, and a single agent. Since the initial state is known unambiguously, and all actions are deterministic, the state of the world after any sequence of actions can be accurately predicted, and the question of observability is irrelevant for classical planning.
PRISM is a probabilistic model checker, a formal verification software tool for the modelling and analysis of systems that exhibit probabilistic behaviour. [1] PRISM was introduced around 2002 in the context of Parker's PhD work and is still under active development (as of 2024).
This approach is not the same as that of probabilistic algorithms, but the two may be combined. For non-probabilistic, more specifically deterministic, algorithms, the most common types of complexity estimates are the average-case complexity and the almost-always complexity.
Statistical models are often used even when the data-generating process being modeled is deterministic. For instance, coin tossing is, in principle, a deterministic process; yet it is commonly modeled as stochastic (via a Bernoulli process). Choosing an appropriate statistical model to represent a given data-generating process is sometimes ...
The objective of the stochastic scheduling problems can be regular objectives such as minimizing the total flowtime, the makespan, or the total tardiness cost of missing the due dates; or can be irregular objectives such as minimizing both earliness and tardiness costs of completing the jobs, or the total cost of scheduling tasks under likely arrival of a disastrous event such as a severe typhoon.
Probabilistic programming (PP) is a programming paradigm based on the declarative specification of probabilistic models, for which inference is performed automatically. [1] Probabilistic programming attempts to unify probabilistic modeling and traditional general purpose programming in order to make the former easier and more widely applicable.
Although real programs are rarely purely deterministic, it is easier for humans as well as other programs to reason about programs that are. For this reason, most programming languages and especially functional programming languages make an effort to prevent the above events from happening except under controlled conditions.