enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stacking-fault energy - Wikipedia

    en.wikipedia.org/wiki/Stacking-fault_energy

    The two primary methods of deformation in metals are slip and twinning. Slip occurs by dislocation glide of either screw or edge dislocations within a slip plane. Slip is by far the most common mechanism. Twinning is less common but readily occurs under some circumstances. Twinning occurs when there are not enough slip systems to accommodate ...

  3. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.

  4. Crystal plasticity - Wikipedia

    en.wikipedia.org/wiki/Crystal_plasticity

    The slip systems are described by the Schmid tensor, which is tensor product of the Burgers vector and the slip plane normal, and the Schmid tensor is used to obtain the resolved shear stress in each slip system. Each slip system can undergo different amounts of shearing, and obtaining these shear rates lies at the crux of crystal plasticity.

  5. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    PSB structure (adopted from [7]). Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8]) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure.

  6. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Slip in hexagonal close packed (hcp) metals is much more limited than in bcc and fcc crystal structures. Usually, hcp crystal structures allow slip on the densely packed basal {0001} planes along the <11 2 0> directions. The activation of other slip planes depends on various parameters, e.g. the c/a ratio.

  7. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    Sample deformation mechanism map for a hypothetical material. Here there are three main regions: plasticity, power law creep, and diffusional flow. A deformation mechanism map is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions. The technique is applicable to all crystalline materials ...

  8. Crystal twinning - Wikipedia

    en.wikipedia.org/wiki/Crystal_twinning

    Deformation twinning is a response to shear stress. The crystal structure is displaced along successive planes of the crystal, a process also called glide. The twinning is always reflection twinning and the glide plane is also the mirror plane. Deformation twinning can be observed in a calcite cleavage fragment by applying gentle pressure with ...

  9. Strengthening mechanisms of materials - Wikipedia

    en.wikipedia.org/wiki/Strengthening_mechanisms...

    In a polycrystalline metal, grain size has a tremendous influence on the mechanical properties. Because grains usually have varying crystallographic orientations, grain boundaries arise. While undergoing deformation, slip motion will take place. Grain boundaries act as an impediment to dislocation motion for the following two reasons: 1.