Search results
Results from the WOW.Com Content Network
Flowchart showing baroreceptor reflex. The baroreflex or baroreceptor reflex is one of the body's homeostatic mechanisms that helps to maintain blood pressure at nearly constant levels. The baroreflex provides a rapid negative feedback loop in which an elevated blood pressure causes the heart rate to decrease. Decreased blood pressure decreases ...
Reflex responses from such baroreceptor activity can trigger increases or decreases in the heart rate. Arterial baroreceptor sensory endings are simple, splayed nerve endings that lie in the tunica adventitia of the artery. An increase in the mean arterial pressure increases depolarization of these sensory endings, which results in action ...
Baroreflex or baroreceptor reflex — homeostatic countereffect to a sudden elevation or reduction in blood pressure detected by the baroreceptors in the aortic arch, carotid sinuses, etc. Bezold-Jarisch reflex — involves a variety of cardiovascular and neurological processes which cause hypopnea and bradycardia.
Baroreflex activation therapy is an approach to treating high blood pressure and the symptoms of heart failure.It uses an implanted device to electrically stimulate baroreceptors in the carotid sinus region.
High pressure receptors or high pressure baroreceptors are the baroreceptors found within the aortic arch and carotid sinus. They are only sensitive to blood pressures above 60 mmHg . When these receptors are activated they elicit a depressor response; which decreases the heart rate and causes a general vasodilation .
Reflex bradycardia is a bradycardia (decrease in heart rate) in response to the baroreceptor reflex, one of the body's homeostatic mechanisms for preventing abnormal increases in blood pressure. In the presence of high mean arterial pressure , the baroreceptor reflex produces a reflex bradycardia as a method of decreasing blood pressure by ...
Baroreceptor reflex: Baroreceptors in the high pressure receptor zones detect changes in arterial pressure. These baroreceptors send signals ultimately to the medulla of the brain stem, specifically to the rostral ventrolateral medulla (RVLM). The medulla, by way of the autonomic nervous system, adjusts the mean
Mayer waves are cyclic changes or waves in arterial blood pressure brought about by oscillations in the baroreceptor reflex control system. [1] [2] The waves are seen both in the ECG and in continuous blood pressure curves and have a frequency about 0.1 Hz (10-second waves).