Search results
Results from the WOW.Com Content Network
Catalytic hydrogenation using platinum(IV) oxide (PtO 2) [23] or Raney nickel [24] Iron metal in refluxing acetic acid [25] Samarium diiodide [26] Raney nickel, platinum on carbon, or zinc dust and formic acid or ammonium formate [6] α,β-Unsaturated nitro compounds can be reduced to saturated amines by: Catalytic hydrogenation over palladium ...
Catalytic hydrogenation can be used to reduce amides to amines; however, the process often requires high hydrogenation pressures and reaction temperatures to be effective (i.e. often requiring pressures above 197 atm and temperatures exceeding 200 °C). [1]
The intermediate imine can be isolated or reacted in-situ with a suitable reducing agent (e.g., sodium borohydride) to produce the amine product. [2] Intramolecular reductive amination can also occur to afford a cyclic amine product if the amine and carbonyl are on the same molecule of starting material. [4]
The catalytic hydrogenation of nitriles is often the most economical route available for the production of primary amines. [3] Catalysts for the reaction often include group 10 metals such as Raney nickel, [4] [5] [6] palladium black, or platinum dioxide. [1]
The Cope reaction or Cope elimination, developed by Arthur C. Cope, is the elimination reaction of an N-oxide to an alkene and a hydroxylamine. [1] [2] [3] [4]Cope reaction ...
[4] [5] Hydrogenation occurs with syn stereochemistry when used on an alkyne resulting in a cis-alkene. Some of the most important transformations include the hydrogenation of ketones to alcohols or ethers (the latter product forming in the presence of alcohols and acids) [ 6 ] and the reduction of nitro compounds to amines. [ 7 ]
For example, in the three-component coupling of aldehydes, amines, and activated alkenes, the aldehyde reacts with the amine to produce an imine prior to forming the aza-MBH adduct, as in the reaction of aryl aldehydes, diphenylphosphinamide, and methyl vinyl ketone, in the presence of TiCl 4, triphenylphosphine, and triethylamine: [19]
The method they used is stereodivergent, in which the phenylcyclopropane amine 29 gives syn products, and the proline catalyst gives anti product. After the hydrogenation step, they successfully obtained chiral amines substituted with two similar alkyl groups, which is hard to obtained in a single enantiomeric compound. Scheme 26.