enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron transfer - Wikipedia

    en.wikipedia.org/wiki/Electron_transfer

    In heterogeneous electron transfer, an electron moves between a chemical species present in solution and the surface of a solid such as a semi-conducting material or an electrode. Theories addressing heterogeneous electron transfer have applications in electrochemistry and the design of solar cells.

  3. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  4. Light-dependent reactions - Wikipedia

    en.wikipedia.org/wiki/Light-dependent_reactions

    The electron transfer back from the electron acceptor to the positively charged special pair is especially slow. The rate of an electron transfer reaction increases with its thermodynamic favorability up to a point and then decreases. The back transfer is so favorable that it takes place in the inverted region where electron-transfer rates ...

  5. Quantum biology - Wikipedia

    en.wikipedia.org/wiki/Quantum_biology

    This theory has largely been disproven by FT electron spectroscopy experiments that show electron absorption and transfer with an efficiency of above 99%, [61] which cannot be explained by classical mechanical models. Instead, as early as 1938, scientists theorized that quantum coherence was the mechanism for excitation-energy transfer.

  6. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    In cellular biology, active transport is the movement of molecules or ions across a cell membrane from a region of lower concentration to a region of higher concentration—against the concentration gradient. Active transport requires cellular energy to achieve this movement.

  7. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    An isolated electron at a constant velocity cannot emit or absorb a real photon; doing so would violate conservation of energy and momentum. Instead, virtual photons can transfer momentum between two charged particles. This exchange of virtual photons, for example, generates the Coulomb force. [114]

  8. Adiabatic electron transfer - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_electron_transfer

    This approach is widely applicable to long-range ground-state intramolecular electron transfer, electron transfer in biology, and electron transfer in conducting materials. It also typically controls the rate of charge separation in the excited-state photochemical application described in Figure 2 and related problems.

  9. Oxidoreductase - Wikipedia

    en.wikipedia.org/wiki/Oxidoreductase

    In biochemistry, an oxidoreductase is an enzyme that catalyzes the transfer of electrons from one molecule, the reductant, also called the electron donor, to another, the oxidant, also called the electron acceptor. This group of enzymes usually utilizes NADP+ or NAD+ as cofactors.