enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.

  3. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    To define a spherical coordinate system, one must designate an origin point in space, O, and two orthogonal directions: the zenith reference direction and the azimuth reference direction. These choices determine a reference plane that is typically defined as containing the point of origin and the x– and y–axes , either of which may be ...

  4. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    As such, the ⁠ ⁠-sphere is the setting for ⁠ ⁠-dimensional spherical geometry. Considered extrinsically, as a hypersurface embedded in ⁠ (+) ⁠-dimensional Euclidean space, an ⁠ ⁠-sphere is the locus of points at equal distance (the radius) from a given center point.

  5. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    Many theorems from classical geometry hold true for spherical geometry as well, but not all do because the sphere fails to satisfy some of classical geometry's postulates, including the parallel postulate. In spherical trigonometry, angles are defined between great circles. Spherical trigonometry differs from ordinary trigonometry in

  6. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  7. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r , polar angle θ ( theta ), and azimuthal angle φ ( phi ).

  8. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    In spherical geometry, a spherical circle (often shortened to circle) is the locus of points on a sphere at constant spherical distance (the spherical radius) from a given point on the sphere (the pole or spherical center).

  9. 3-sphere - Wikipedia

    en.wikipedia.org/wiki/3-sphere

    The boundary of a 3-ball is a 2-sphere, and these two 2-spheres are to be identified. That is, imagine a pair of 3-balls of the same size, then superpose them so that their 2-spherical boundaries match, and let matching pairs of points on the pair of 2-spheres be identically equivalent to each other.