enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Characteristic length - Wikipedia

    en.wikipedia.org/wiki/Characteristic_length

    In physics, a characteristic length is an important dimension that defines the scale of a physical system. Often, such a length is used as an input to a formula in order to predict some characteristics of the system, and it is usually required by the construction of a dimensionless quantity, in the general framework of dimensional analysis and in particular applications such as fluid mechanics.

  3. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.

  4. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  5. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    From the equation it is shown that for a flow with a large Reynolds Number there will be a correspondingly small convective boundary layer compared to the vessel’s characteristic length. [5] By knowing the Reynolds and Womersley numbers for a given flow it is possible to calculate both the transient and the convective boundary layer ...

  6. Chézy formula - Wikipedia

    en.wikipedia.org/wiki/Chézy_formula

    is the Chézy coefficient [length 1/2 /time], a function of relative roughness and Reynolds number; [2] R {\displaystyle R} is the hydraulic radius, which is the cross-sectional area of flow divided by the wetted perimeter (for a wide channel this is approximately equal to the water depth) [m];

  7. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    A key tool used to determine the stability of a flow is the Reynolds number (Re), first put forward by George Gabriel Stokes at the start of the 1850s. Associated with Osborne Reynolds who further developed the idea in the early 1880s, this dimensionless number gives the ratio of inertial terms and viscous terms. [4]

  8. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    If the fluid is a liquid, depends on the Reynolds number; if the fluid is a gas, depends on both the Reynolds number and the Mach number. The equation is attributed to Lord Rayleigh , who originally used L 2 in place of A (with L being some linear dimension).

  9. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...