Search results
Results from the WOW.Com Content Network
Poincaré disk with hyperbolic parallel lines Poincaré disk model of the truncated triheptagonal tiling.. In geometry, the Poincaré disk model, also called the conformal disk model, is a model of 2-dimensional hyperbolic geometry in which all points are inside the unit disk, and straight lines are either circular arcs contained within the disk that are orthogonal to the unit circle or ...
There are three main types of computer environments for studying school geometry: supposers [vague], dynamic geometry environments (DGEs) and Logo-based programs. [2] Most are DGEs: software that allows the user to manipulate ("drag") the geometric object into different shapes or positions.
A Poincaré disk showing the hypercycle HC that is determined by the straight line L (termed straight because it cuts the horizon at right angles) and point P. In hyperbolic geometry, a hypercycle, hypercircle or equidistant curve is a curve whose points have the same orthogonal distance from a given straight line (its axis).
The algorithm selects one point p randomly and uniformly from P, and recursively finds the minimal circle containing P – {p}, i.e. all of the other points in P except p. If the returned circle also encloses p, it is the minimal circle for the whole of P and is returned. Otherwise, point p must lie on the boundary of the result circle.
Specific cases for the blade A (independent of the number of dimensions of the space) when the base space is Euclidean space are: a scalar: the empty set; a vector: a single point; a bivector: a pair of points; a trivector: a generalized circle; a 4-vector: a generalized sphere; etc.
The most famous of these problems, squaring the circle, otherwise known as the quadrature of the circle, involves constructing a square with the same area as a given circle using only straightedge and compass. Squaring the circle has been proved impossible, as it involves generating a transcendental number, that is, √ π.
If the sphere is isometrically embedded in Euclidean space, the sphere's intersection with a plane is a circle, which can be interpreted extrinsically to the sphere as a Euclidean circle: a locus of points in the plane at a constant Euclidean distance (the extrinsic radius) from a point in the plane (the extrinsic center). A great circle lies ...
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...