Search results
Results from the WOW.Com Content Network
Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).
Radioactive isotopes are used in medicine for both treatment and diagnostic scans. The most common isotope used in diagnostic scans is Technetium-99m, used in approximately 85% of all nuclear medicine diagnostic scans worldwide. It is used for diagnoses involving a large range of body parts and diseases such as cancers and neurological problems ...
With a short half-life of 8 days, this radioisotope is not of practical use in radioactive sources in industrial radiography or sensing. However, since iodine is a component of biological molecules such as thyroid hormones, iodine-131 is of great importance in nuclear medicine , and in medical and biological research as a radioactive tracer .
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
Get breaking news and the latest headlines on business, entertainment, politics, world news, tech, sports, videos and much more from AOL
Virtually all helium-3 used in industry today is produced from the radioactive decay of tritium, given its very low natural abundance and its very high cost. Production, sales and distribution of helium-3 in the United States are managed by the US Department of Energy (DOE) DOE Isotope Program. [29]
Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms).
Natural uranium consists of three isotopes; the majority (99.274%) is U-238, while approximately 0.72% is U-235, fissile by thermal neutrons, and the remaining 0.0055% is U-234. If natural uranium is enriched to 3% U-235, it can be used as fuel for light water nuclear reactors. If it is enriched to 90% uranium-235, it can be used for nuclear ...