enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Michaelis–Menten_kinetics

    Determining the parameters of the Michaelis–Menten equation typically involves running a series of enzyme assays at varying substrate concentrations , and measuring the initial reaction rates , i.e. the reaction rates are measured after a time period short enough for it to be assumed that the enzyme-substrate complex has formed, but that the ...

  3. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    The major contribution of the Henri-Michaelis-Menten approach was to think of enzyme reactions in two stages. In the first, the substrate binds reversibly to the enzyme, forming the enzyme-substrate complex. This is sometimes called the Michaelis complex. The enzyme then catalyzes the chemical step in the reaction and releases the product.

  4. Reversible Michaelis–Menten kinetics - Wikipedia

    en.wikipedia.org/wiki/Reversible_Michaelis...

    The study of how fast an enzyme can transform a substrate into a product is called enzyme kinetics. The rate of reaction of many chemical reactions shows a linear response as function of the concentration of substrate molecules. Enzymes however display a saturation effect where,, as the substrate concentration is increased the reaction rate ...

  5. Enzyme - Wikipedia

    en.wikipedia.org/wiki/Enzyme

    Enzymes increase reaction rates by lowering the energy of the transition state. First, binding forms a low energy enzyme-substrate complex (ES). Second, the enzyme stabilises the transition state such that it requires less energy to achieve compared to the uncatalyzed reaction (ES ‡). Finally the enzyme-product complex (EP) dissociates to ...

  6. Dissociation rate - Wikipedia

    en.wikipedia.org/wiki/Dissociation_rate

    Substrate dissociation rate contributes to how large or small the enzyme velocity will be. [2] In the Michaelis-Menten model, the enzyme binds to the substrate yielding an enzyme substrate complex, which can either go backwards by dissociating or go forward by forming a product. [2] The dissociation rate constant is defined using K off. [2]

  7. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Enzyme changes shape by induced fit upon substrate binding to form enzyme-substrate complex. Hexokinase has a large induced fit motion that closes over the substrates adenosine triphosphate and xylose. Binding sites in blue, substrates in black and Mg 2+ cofactor in yellow. (The different mechanisms of substrate binding

  8. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    The enzyme initially has a conformation that attracts its substrate. Enzyme surface is flexible and only the correct catalyst can induce interaction leading to catalysis. Conformational changes may then occur as the substrate is bound. After the reaction products will move away from the enzyme and the active site returns to its initial shape.

  9. Substrate (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Substrate_(chemistry)

    Similarly, a substrate is called 'fluorogenic' if it gives rise to a fluorescent product when acted on by an enzyme. [citation needed] For example, curd formation (rennet coagulation) is a reaction that occurs upon adding the enzyme rennin to milk. In this reaction, the substrate is a milk protein (e.g., casein) and the enzyme is rennin. The ...