enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Specific heat capacity - Wikipedia

    en.wikipedia.org/wiki/Specific_heat_capacity

    The specific heat capacity of a substance, especially a gas, may be significantly higher when it is allowed to expand as it is heated (specific heat capacity at constant pressure) than when it is heated in a closed vessel that prevents expansion (specific heat capacity at constant volume).

  3. Table of specific heat capacities - Wikipedia

    en.wikipedia.org/wiki/Table_of_specific_heat...

    Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...

  4. Water (data page) - Wikipedia

    en.wikipedia.org/wiki/Water_(data_page)

    V – specific volume in cubic decimeters per kilogram (1 dm 3 is equivalent to 1 liter) H – specific enthalpy in kilojoules per kilogram; U – specific internal energy in kilojoules per kilogram; S – specific entropy in kilojoules per kilogram-kelvin; c p – specific heat capacity at constant pressure in kilojoules per kilogram-kelvin

  5. Volumetric heat capacity - Wikipedia

    en.wikipedia.org/wiki/Volumetric_heat_capacity

    These two factors (constancy of atomic volume and constancy of mole-specific heat capacity) result in a good correlation between the volume of any given solid chemical element and its total heat capacity. Another way of stating this, is that the volume-specific heat capacity (volumetric heat capacity) of solid elements is roughly a constant.

  6. Heat capacity - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity

    In those contexts, the unit of heat capacity is 1 BTU/°R ≈ 1900 J/K. [5] The BTU was in fact defined so that the average heat capacity of one pound of water would be 1 BTU/°F. In this regard, with respect to mass, note conversion of 1 Btu/lb⋅°R ≈ 4,187 J/kg⋅K [ 6 ] and the calorie (below).

  7. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    Water has a very high specific heat capacity of 4184 J/(kg·K) at 20 °C (4182 J/(kg·K) at 25 °C) —the second-highest among all the heteroatomic species (after ammonia), as well as a high heat of vaporization (40.65 kJ/mol or 2268 kJ/kg at the normal boiling point), both of which are a result of the extensive hydrogen bonding between its ...

  8. Heat capacities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Heat_capacities_of_the...

    J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds

  9. Molar heat capacity - Wikipedia

    en.wikipedia.org/wiki/Molar_heat_capacity

    Since the molar heat capacity of a substance is the specific heat c times the molar mass of the substance M/N its numerical value is generally smaller than that of the specific heat. Paraffin wax , for example, has a specific heat of about 2500 J⋅K −1 ⋅kg −1 but a molar heat capacity of about 600 J⋅K −1 ⋅mol −1 .