Ad
related to: absolute value examples on a number line calculator for inequalities
Search results
Results from the WOW.Com Content Network
Eaton's inequality, a bound on the largest absolute value of a linear combination of bounded random variables; Emery's inequality; Entropy power inequality; Etemadi's inequality; Fannes–Audenaert inequality; Fano's inequality; Fefferman's inequality; Fréchet inequalities; Gauss's inequality
The absolute value of a number may be thought of as its distance from zero. Generalisations of the absolute value for real numbers occur in a wide variety of mathematical settings. For example, an absolute value is also defined for the complex numbers, the quaternions, ordered rings, fields and vector spaces.
The Euclidean norm of a complex number is the absolute value (also called the modulus) of it, if the complex plane is identified with the Euclidean plane. This identification of the complex number x + i y {\displaystyle x+iy} as a vector in the Euclidean plane, makes the quantity x 2 + y 2 {\textstyle {\sqrt {x^{2}+y^{2}}}} (as first suggested ...
The feasible regions of linear programming are defined by a set of inequalities. In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size.
The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).
The absolute value is a norm for the real line; as required, the absolute value satisfies the triangle inequality for any real numbers u and v. If u and v have the same sign or either of them is zero, then | + | = | | + | |. If u and v have opposite signs, then without loss of generality assume | | > | |.
In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value. [1]
The absolute difference of two real numbers and is given by | |, the absolute value of their difference. It describes the distance on the real line between the points corresponding to x {\displaystyle x} and y {\displaystyle y} .
Ad
related to: absolute value examples on a number line calculator for inequalities