Search results
Results from the WOW.Com Content Network
Pyrithione is the common name of an organosulfur compound with molecular formula C 5 H 5 NOS, chosen as an abbreviation of pyridinethione, and found in the Persian shallot. [4] It exists as a pair of tautomers, the major form being the thione 1-hydroxy-2(1H)-pyridinethione and the minor form being the thiol 2-mercaptopyridine N-oxide; it crystallises in the thione form. [5]
Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and proton transfers and the formation of an oxygen-oxygen bond. This process occurs naturally in plants photosystem II to provide protons and electrons for the photosynthesis process and release oxygen to the atmosphere, [ 1 ] as ...
The pyrithione ligands, which are formally monoanions, are chelated to Zn 2+ via oxygen and sulfur centers. In the crystalline state, zinc pyrithione exists as a centrosymmetric dimer (see figure), where each zinc is bonded to two sulfur and three oxygen centers. [3] In solution, however, the dimers dissociate via scission of one Zn-O bond ...
In aqueous solutions, redox potential is a measure of the tendency of the solution to either gain or lose electrons in a reaction. A solution with a higher (more positive) reduction potential than some other molecule will have a tendency to gain electrons from this molecule (i.e. to be reduced by oxidizing this other molecule) and a solution with a lower (more negative) reduction potential ...
Rather than combustion, organisms rely on elaborate sequences of electron-transfer reactions, often coupled to proton transfer. The direct reaction of O 2 with fuel is precluded by the oxygen reduction reaction, which produces water and adenosine triphosphate. Cytochrome c oxidase affects the oxygen reduction reaction by binding O 2 in a heme ...
Examples of organic reactions that can take place in an electrochemical cell are the Kolbe electrolysis. [3] In disproportionation reactions the reactant is both oxidised and reduced in the same chemical reaction forming two separate compounds. Asymmetric catalytic reductions and asymmetric catalytic oxidations are important in asymmetric ...
Pyridine-N-oxide is the heterocyclic compound with the formula C 5 H 5 NO. This colourless, hygroscopic solid is the product of the oxidation of pyridine. It was originally prepared using peroxyacids as the oxidising agent. The compound is used infrequently as an oxidizing reagent in organic synthesis. [1]
The free radicals generated by this process engage in secondary reactions. For example, the hydroxyl is a powerful, non-selective oxidant. [6] Oxidation of an organic compound by Fenton's reagent is rapid and exothermic and results in the oxidation of contaminants to primarily carbon dioxide and water.