enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uncountable set - Wikipedia

    en.wikipedia.org/wiki/Uncountable_set

    The best known example of an uncountable set is the set ⁠ ⁠ of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers ⁠ ⁠ (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...

  3. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows:

  4. Cantor's first set theory article - Wikipedia

    en.wikipedia.org/wiki/Cantor's_first_set_theory...

    Cantor's first set theory article contains Georg Cantor's first theorems of transfinite set theory, which studies infinite sets and their properties. One of these theorems is his "revolutionary discovery" that the set of all real numbers is uncountably , rather than countably , infinite. [ 1 ]

  5. List of types of sets - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_sets

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  6. Almost all - Wikipedia

    en.wikipedia.org/wiki/Almost_all

    The set of rational numbers is countable, so almost all real numbers are irrational. [12] Georg Cantor's first set theory article proved that the set of algebraic numbers is countable as well, so almost all reals are transcendental. [13] [sec 6] Almost all reals are normal. [14] The Cantor set is also null. Thus, almost all reals are not in it ...

  7. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  8. Uncountable - Wikipedia

    en.wikipedia.org/?title=Uncountable&redirect=no

    From Wikipedia, the free encyclopedia. ... Uncountable set; From an adjective: This is a redirect from an adjective, which is a word or phrase that describes a noun, ...

  9. Skolem's paradox - Wikipedia

    en.wikipedia.org/wiki/Skolem's_paradox

    One of the earliest results in set theory, published by Cantor in 1874, was the existence of different sizes, or cardinalities, of infinite sets. [2] An infinite set is called countable if there is a function that gives a one-to-one correspondence between and the natural numbers, and is uncountable if there is no such correspondence function.