Search results
Results from the WOW.Com Content Network
Less commonly (though more consistent with the general definition of union in mathematics) the union of two graphs is defined as the graph (V 1 ∪ V 2, E 1 ∪ E 2). graph intersection: G 1 ∩ G 2 = (V 1 ∩ V 2, E 1 ∩ E 2); [1] graph join: . Graph with all the edges that connect the vertices of the first graph with the vertices of the ...
The edge-connectivity for a graph with at least 2 vertices is less than or equal to the minimum degree of the graph because removing all the edges that are incident to a vertex of minimum degree will disconnect that vertex from the rest of the graph. [1] For a vertex-transitive graph of degree d, we have: 2(d + 1)/3 ≤ κ(G) ≤ λ(G) = d. [11]
In graph theory, a part of mathematics, a k-partite graph is a graph whose vertices are (or can be) partitioned into k different independent sets. Equivalently, it is a graph that can be colored with k colors, so that no two endpoints of an edge have the same color. When k = 2 these are the bipartite graphs, and when k = 3 they are called the ...
A graph is planar if it contains as a subdivision neither the complete bipartite graph K 3,3 nor the complete graph K 5. Another problem in subdivision containment is the Kelmans–Seymour conjecture: Every 5-vertex-connected graph that is not planar contains a subdivision of the 5-vertex complete graph K 5.
Perfect graph, a graph with no induced cycles or their complements of odd length greater than three; Pseudoforest, a graph in which each connected component has at most one cycle; Strangulated graph, a graph in which every peripheral cycle is a triangle; Strongly connected graph, a directed graph in which every edge is part of a cycle
The cube of every connected graph necessarily contains a Hamiltonian cycle. [10] It is not necessarily the case that the square of a connected graph is Hamiltonian, and it is NP-complete to determine whether the square is Hamiltonian. [11] Nevertheless, by Fleischner's theorem, the square of a 2-vertex-connected graph is always Hamiltonian. [12]
In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors.Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis.
A proper vertex coloring of the Petersen graph with 3 colors, the minimum number possible. In graph theory, graph coloring is a methodic assignment of labels traditionally called "colors" to elements of a graph. The assignment is subject to certain constraints, such as that no two adjacent elements have the same color.