Search results
Results from the WOW.Com Content Network
In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces.These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others.
In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .
[1] [2] In the following year, both authors improved their results and published them independently. [3] [4] [5] Nonetheless, a complete proof of the inequality went missing in the literature for a long time. Indeed, to some extent, both original works of Gagliardo and Nirenberg do not contain a full and rigorous argument proving the result.
equipped with the previous norm is a Banach space (a general definition of , (′) for non-integer > can be found in the article for Sobolev-Slobodeckij spaces). For the (n-1)-dimensional Lipschitz manifold define /, by locally straightening and proceeding as in the definition of /, (′).
In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.
In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a
Let M be a topological space.A chart (U, φ) on M consists of an open subset U of M, and a homeomorphism φ from U to an open subset of some Euclidean space R n.Somewhat informally, one may refer to a chart φ : U → R n, meaning that the image of φ is an open subset of R n, and that φ is a homeomorphism onto its image; in the usage of some authors, this may instead mean that φ : U → R n ...
This category includes maps between manifolds, smooth or otherwise, particularly in geometric topology. Pages in category "Maps of manifolds" The following 14 pages are in this category, out of 14 total.