enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Probably approximately correct learning - Wikipedia

    en.wikipedia.org/wiki/Probably_approximately...

    An Introduction to Computational Learning Theory. MIT Press, 1994. A textbook. M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. MIT Press, 2018. Chapter 2 contains a detailed treatment of PAC-learnability. Readable through open access from the publisher. D. Haussler.

  3. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]

  5. Electroencephalography - Wikipedia

    en.wikipedia.org/wiki/Electroencephalography

    In research, currently EEG is often used in combination with machine learning. [124] EEG data are pre-processed then passed on to machine learning algorithms. These algorithms are then trained to recognize different diseases like schizophrenia, [125] epilepsy [126] or dementia. [127] Furthermore, they are increasingly used to study seizure ...

  6. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  7. EEG analysis - Wikipedia

    en.wikipedia.org/wiki/EEG_analysis

    EEG-based BCI approaches, together with advances in machine learning and other technologies such as wireless recording, aim to contribute to the daily lives of people with disabilities and significantly improve their quality of life. [29] Such an EEG-based BCI can help, e.g., patients with amyotrophic lateral sclerosis, with some daily activities.

  8. CN2 algorithm - Wikipedia

    en.wikipedia.org/wiki/CN2_algorithm

    The CN2 induction algorithm is a learning algorithm for rule induction. [1] It is designed to work even when the training data is imperfect. It is based on ideas from the AQ algorithm and the ID3 algorithm. As a consequence it creates a rule set like that created by AQ but is able to handle noisy data like ID3.

  9. Empirical risk minimization - Wikipedia

    en.wikipedia.org/wiki/Empirical_risk_minimization

    In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure: