Search results
Results from the WOW.Com Content Network
A solid with extensive hydrogen bonding will be considered a molecular solid, yet strong hydrogen bonds can have a significant degree of covalent character. As noted above, covalent and ionic bonds form a continuum between shared and transferred electrons; covalent and weak bonds form a continuum between shared and unshared electrons.
Two metals in electrical contact share the same electrons, so that the "tug-of-war" at each surface is analogous to competition for free electrons between the two materials. Using the electrolyte as a host for the flow of ions in the same direction, the noble metal will take electrons from the active one.
Simple illustration of particles in the solid state – they are closely packed to each other. In a solid, constituent particles (ions, atoms, or molecules) are closely packed together. The forces between particles are so strong that the particles cannot move freely but can only vibrate. As a result, a solid has a stable, definite shape, and a ...
If a monochromatic, primary beam of electrons is incident on a solid surface, the majority of incident electrons lose their energy because they interact strongly with matter, leading to plasmon excitation, electron-hole pair formation, and vibrational excitation. [2]
Chain-melted state: Metals, such as potassium, at high temperature and pressure, present properties of both a solid and liquid. Wigner crystal: a crystalline phase of low-density electrons. Hexatic state, a state of matter that is between the solid and the isotropic liquid phases in two dimensional systems of particles. Ferroics
Phonons are not always in local thermal equilibrium; they move against the thermal gradient. They lose momentum by interacting with electrons (or other carriers) and imperfections in the crystal. If the phonon-electron interaction is predominant, the phonons will tend to push the electrons to one end of the material, losing momentum in the process.
They are formed due to the sharp transition from solid material that ends with a surface and are found only at the atom layers closest to the surface. The termination of a material with a surface leads to a change of the electronic band structure from the bulk material to the vacuum. In the weakened potential at the surface, new electronic ...
In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pushed or pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility.