Search results
Results from the WOW.Com Content Network
Water on hydrophobic surfaces will exhibit a high contact angle. Examples of hydrophobic molecules include the alkanes, oils, fats, and greasy substances in general. Hydrophobic materials are used for oil removal from water, the management of oil spills, and chemical separation processes to remove non-polar substances from polar compounds. [2]
There are three basic types of secondary messenger molecules: [citation needed] Hydrophobic molecules: water-insoluble molecules such as diacylglycerol, and phosphatidylinositols, which are membrane-associated and diffuse from the plasma membrane into the intermembrane space where they can reach and regulate membrane-associated effector proteins.
Each glycerophospholipid molecule consists of a small polar head group and two long hydrophobic chains. In the cell membrane, the two layers of phospholipids are arranged as follows: the hydrophobic tails point to each other and form a fatty, hydrophobic center; the ionic head groups are placed at the inner and outer surfaces of the cell membrane
In biological membranes, the phospholipids often occur with other molecules (e.g., proteins, glycolipids, sterols) in a bilayer such as a cell membrane. [7] Lipid bilayers occur when hydrophobic tails line up against one another, forming a membrane of hydrophilic heads on both sides facing the water. [8]
An example of these amphiphilic molecules is the lipids that comprise the cell membrane. Another example is soap, which has a hydrophilic head and a hydrophobic tail, allowing it to dissolve in both water and oil. Hydrophilic and hydrophobic molecules are also known as polar molecules and nonpolar molecules, respectively. Some hydrophilic ...
[1] [2] The word hydrophobic literally means "water-fearing", and it describes the segregation of water and nonpolar substances, which maximizes the entropy of water and minimizes the area of contact between water and nonpolar molecules. In terms of thermodynamics, the hydrophobic effect is the free energy change of water surrounding a solute. [3]
The lipid bilayer, the material that makes up cell membranes. Phospholipids, a class of amphiphilic molecules, are the main components of biological membranes. The amphiphilic nature of these molecules defines the way in which they form membranes. They arrange themselves into lipid bilayers, by forming a sheet composed of two layers of lipids ...
During fusion, the hydrophobic tails of a small patch of lipids on the cell membrane are exposed to the aqueous phase surrounding them. This results in very strong hydrophobic attractions (which dominate the repulsive force) between the exposed groups leading to membrane fusion. [10]