enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. GravityLight - Wikipedia

    en.wikipedia.org/wiki/GravityLight

    The light would be turned on by filling the bag with approximately 20 pounds (9.1 kg) of weight [9] and lifting it up to the base of the device; the weight gradually descends over a period of 25 minutes, pulling a cord/strap that spins gears and drives an electric generator, which continuously powers an LED. [10]

  3. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    The speed of gravitational waves in the general theory of relativity is equal to the speed of light in vacuum, c. [3] Within the theory of special relativity, the constant c is not only about light; instead it is the highest possible speed for any interaction in nature.

  4. Crookes radiometer - Wikipedia

    en.wikipedia.org/wiki/Crookes_radiometer

    If light pressure were the cause of the rotation, then the better the vacuum in the bulb, the less air resistance to movement, and the faster the vanes should spin. In 1901, with a better vacuum pump, Pyotr Lebedev showed that in fact, the radiometer only works when there is low-pressure gas in the bulb, and the vanes stay motionless in a hard ...

  5. Gravitoelectromagnetism - Wikipedia

    en.wikipedia.org/wiki/Gravitoelectromagnetism

    Diagram regarding the confirmation of gravitomagnetism by Gravity Probe B. Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity.

  6. Gravitational redshift - Wikipedia

    en.wikipedia.org/wiki/Gravitational_redshift

    The gravitational weakening of light from high-gravity stars was predicted by John Michell in 1783 and Pierre-Simon Laplace in 1796, using Isaac Newton's concept of light corpuscles (see: emission theory) and who predicted that some stars would have a gravity so strong that light would not be able to escape.

  7. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Therefore, the absorption of this radiation leads to a force with a component against the direction of movement. (The angle of aberration is tiny, since the radiation is moving at the speed of light, while the dust grain is moving many orders of magnitude slower than that.) The result is a gradual spiral of dust grains into the Sun.

  8. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Before Newton's law of gravity, there were many theories explaining gravity. Philoshophers made observations about things falling down − and developed theories why they do – as early as Aristotle who thought that rocks fall to the ground because seeking the ground was an essential part of their nature. [6]

  9. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    Gravitational time dilation is closely related to gravitational redshift, [4] in which the closer a body emitting light of constant frequency is to a gravitating body, the more its time is slowed by gravitational time dilation, and the lower (more "redshifted") would seem to be the frequency of the emitted light, as measured by a fixed observer.