Search results
Results from the WOW.Com Content Network
RX J1856.5−3754 is thought to have formed in a supernova explosion of its companion star about one million years ago and is moving across the sky at 108 km/s. It was discovered in 1992, and observations in 1996 confirmed that it is a neutron star, the closest to Earth discovered to date. [3]
Near-Earth asteroid (99942) Apophis will pass Earth at a relatively small distance of 31,200 km (19,400 mi) above Earth's surface, closer than some geosynchronous satellites. [5] 2029 June 26 Total lunar eclipse. With an umbral eclipse magnitude of 1.84362, it will be the largest total lunar eclipse of the 21st century. 2029 December 20
A neutron star is so dense that one teaspoon (5 milliliters) of its material would have a mass over 5.5 × 10 12 kg, about 900 times the mass of the Great Pyramid of Giza. [b] The entire mass of the Earth at neutron star density would fit into a sphere 305 m in diameter, about the size of the Arecibo Telescope.
Timeline of neutron stars, pulsars, supernovae, and white dwarfs. Note that this list is mainly about the development of knowledge, but also about some supernovae taking place. For a separate list of the latter, see the article List of supernovae. All dates refer to when the supernova was observed on Earth or would have been observed on Earth ...
On 11 March 1998, using a three-month observation arc, a faulty International Astronomical Union circular and press information sheet were put out that incorrectly concluded "that the asteroid was 'virtually certain' to pass within 80% of the distance to the Moon and stood a 'small...not entirely out of the question' possibility of hitting the Earth in 2028."
Zooming to RX J1856.5−3754 which is one of the Magnificent Seven and, at a distance of about 400 light-years, the closest-known neutron star. Neutron stars are the collapsed cores of supergiant stars. [1] They are created as a result of supernovas and gravitational collapse, [2] and are the second-smallest and densest class of stellar objects ...
Known gravitational wave events come from the merger of two black holes (BH), two neutron stars (NS), or a black hole and a neutron star (BHNS). [ 9 ] [ 10 ] Some objects are in the mass gap between the largest predicted neutron star masses ( Tolman–Oppenheimer–Volkoff limit ) and the smallest known black holes.
The 4U 1820-30 system, consisting of a neutron star and a white dwarf, compared to the Earth and the Sun (bottom). The neutron star is tied with PSR J1748−2446ad as the fastest rotating pulsar known, both making 716 revolutions per second. NGC 6624 is a globular cluster in the constellation Sagittarius.