enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in connection with their studies of the tautochrone problem. The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Functions that maximize or minimize functionals may be found using the EulerLagrange equation of the calculus of variations. A simple example of such a problem is to find the curve of shortest length connecting two points. If there are no constraints, the solution is a straight line between the points. However, if the curve is constrained to ...

  4. Beltrami identity - Wikipedia

    en.wikipedia.org/wiki/Beltrami_identity

    Download as PDF; Printable version ... The EulerLagrange equation serves ... The solution to the brachistochrone problem is the cycloid. An example of an ...

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Particularly, Lagrange's approach was to set up independent generalized coordinates for the position and speed of every object, which allows the writing down of a general form of Lagrangian (total kinetic energy minus potential energy of the system) and summing this over all possible paths of motion of the particles yielded a formula for the ...

  6. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  7. Hilbert's nineteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_nineteenth_problem

    Informally, and perhaps less directly, since Hilbert's concept of a "regular variational problem" identifies this precisely as a variational problem whose EulerLagrange equation is an elliptic partial differential equation with analytic coefficients, [3] Hilbert's nineteenth problem, despite its seemingly technical statement, simply asks ...

  8. Lagrangian system - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_system

    A Lagrangian density L (or, simply, a Lagrangian) of order r is defined as an n-form, n = dim X, on the r-order jet manifold J r Y of Y.. A Lagrangian L can be introduced as an element of the variational bicomplex of the differential graded algebra O ∗ ∞ (Y) of exterior forms on jet manifolds of Y → X.

  9. Hamiltonian optics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_optics

    The general results presented above for Hamilton's principle can be applied to optics using the Lagrangian defined in Fermat's principle.The Euler-Lagrange equations with parameter σ =x 3 and N=2 applied to Fermat's principle result in ˙ = with k = 1, 2 and where L is the optical Lagrangian and ˙ = /.