enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    The path of this projectile launched from a height y 0 has a range d. In physics, a projectile launched with specific initial conditions will have a range. It may be more predictable assuming a flat Earth with a uniform gravity field, and no air resistance. The horizontal ranges of a projectile are equal for two complementary angles of ...

  3. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    The range and the maximum height of the projectile do not depend upon its mass. Hence range and maximum height are equal for all bodies that are thrown with the same velocity and direction. The horizontal range d of the projectile is the horizontal distance it has traveled when it returns to its initial height (=). = ⁡ ().

  4. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  5. External ballistics - Wikipedia

    en.wikipedia.org/wiki/External_ballistics

    The deceleration due to drag that a projectile with mass m, velocity v, and diameter d will experience is proportional to 1/BC, 1/m, v² and d². The BC gives the ratio of ballistic efficiency compared to the standard G1 projectile, which is a fictitious projectile with a flat base, a length of 3.28 calibers/diameters, and a 2 calibers ...

  6. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    A trajectory or flight path is the path that an object with mass in motion follows through space as a function of time. In classical mechanics, a trajectory is defined by Hamiltonian mechanics via canonical coordinates; hence, a complete trajectory is defined by position and momentum, simultaneously. The mass might be a projectile or a ...

  7. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  8. Ballistic coefficient - Wikipedia

    en.wikipedia.org/wiki/Ballistic_coefficient

    It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass. BC can be expressed with the units kilogram-force per square meter (kgf/m 2 ) or pounds per square inch (lb/in 2 ) (where 1 lb/in 2 corresponds to 703.069 581 kgf/m 2 ).

  9. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where