Ads
related to: simple age problems with solutions equations
Search results
Results from the WOW.Com Content Network
The Ages of Three Children puzzle (sometimes referred to as the Census-Taker Problem [1]) is a logical puzzle in number theory which on first inspection seems to have insufficient information to solve. However, with closer examination and persistence by the solver, the question reveals its hidden mathematical clues, especially when the solver ...
Solving two linear equations with a unique solution at the point that they intersect. A linear equation with two variables has many (i.e. an infinite number of) solutions. [38] For example: Problem in words: A father is 22 years older than his son. How old are they?
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions. More specifically, the Millennium Prize version of the conjecture is that, if the elliptic curve E has rank r , then the L -function L ( E , s ) associated with it vanishes to order r at s = 1 .
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement. It is also possible to take the ...
Modal analysis using FEM — solution of eigenvalue problems to find natural vibrations; Céa's lemma — solution in the finite-element space is an almost best approximation in that space of the true solution; Patch test (finite elements) — simple test for the quality of a finite element
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
Problems 1, 2, 5, 6, [a] 9, 11, 12, 15, and 22 have solutions that have partial acceptance, but there exists some controversy as to whether they resolve the problems. That leaves 8 (the Riemann hypothesis), 13 and 16 [b] unresolved. Problems 4 and 23 are considered as too vague to ever be described as solved; the withdrawn 24 would also be in ...
Ads
related to: simple age problems with solutions equations