Search results
Results from the WOW.Com Content Network
Nanoparticles differ in their physical properties such as size, shape, and dispersion, which must be measured to fully describe them. The characterization of nanoparticles is a branch of nanometrology that deals with the characterization, or measurement, of the physical and chemical properties of nanoparticles.,. [1]
Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials. [1]
Surface X-ray diffraction (SXRD), which is similar to RHEED but uses X-rays, and is also used to interrogate surface structure. [3] X-ray standing waves, another X-ray variant where the intensity decay into a sample from diffraction is used to analyze chemistry. [4]
The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis. It is named after Paul Scherrer.
This is directly related to the fact that information is lost by the collapse of the 3D space onto a 1D axis. Nevertheless, powder X-ray diffraction is a powerful and useful technique in its own right. It is mostly used to characterize and identify phases, and to refine details of an already known structure, rather than solving unknown structures.
Rietveld refinement is a technique described by Hugo Rietveld for use in the characterisation of crystalline materials. The neutron and X-ray diffraction of powder samples results in a pattern characterised by reflections (peaks in intensity) at certain positions.
X-ray diffraction is a non destructive method of characterization of solid materials. When X-rays are directed at solids they scatter in predictable patterns based on the internal structure of the solid. A crystalline solid consists of regularly spaced atoms (electrons) that can be described by imaginary planes.
A typical application of GISAS is the characterisation of self-assembly and self-organization on the nanoscale in thin films. Systems studied by GISAS include quantum dot arrays, [1] growth instabilities formed during in-situ growth, [2] self-organized nanostructures in thin films of block copolymers, [3] silica mesophases, [4] [5] and nanoparticles.