Search results
Results from the WOW.Com Content Network
[8] [9] [verification needed] Cramer's rule can also be numerically unstable even for 2×2 systems. [10] However, Cramer's rule can be implemented with the same complexity as Gaussian elimination, [11] [12] (consistently requires twice as many arithmetic operations and has the same numerical stability when the same permutation matrices are ...
Cramér's theorem is a fundamental result in the theory of large deviations, a subdiscipline of probability theory. It determines the rate function of a series of iid random variables. A weak version of this result was first shown by Harald Cramér in 1938.
Entropy, Large Deviations and Statistical Mechanics by R.S. Ellis, Springer Publication. ISBN 3-540-29059-1; Large Deviations for Performance Analysis by Alan Weiss and Adam Shwartz. Chapman and Hall ISBN 0-412-06311-5; Large Deviations Techniques and Applications by Amir Dembo and Ofer Zeitouni. Springer ISBN 0-387-98406-2
Cramér’s decomposition theorem, a statement about the sum of normal distributed random variable; Cramér's theorem (large deviations), a fundamental result in the theory of large deviations; Cramer's theorem (algebraic curves), a result regarding the necessary number of points to determine a curve
The number of distinct terms (including those with a zero coefficient) in an n-th degree equation in two variables is (n + 1)(n + 2) / 2.This is because the n-th degree terms are ,, …,, numbering n + 1 in total; the (n − 1) degree terms are ,, …,, numbering n in total; and so on through the first degree terms and , numbering 2 in total, and the single zero degree term (the constant).
Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3 , it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.
In number theory, Cramér's conjecture, formulated by the Swedish mathematician Harald Cramér in 1936, [1] is an estimate for the size of gaps between consecutive prime numbers: intuitively, that gaps between consecutive primes are always small, and the conjecture quantifies asymptotically just how small they must be.
If just 2% of our most loyal readers gave $2.75 today, we'd hit our goal in a few hours. Most readers don't donate, so if Wikipedia has given you $2.75 worth of knowledge, please give. Any contribution helps, whether it's $2.75 one time or monthly.