Search results
Results from the WOW.Com Content Network
A hydrogen bond (H-bond), is a specific type of interaction that involves dipole–dipole attraction between a partially positive hydrogen atom and a highly electronegative, partially negative oxygen, nitrogen, sulfur, or fluorine atom (not covalently bound to said hydrogen atom). It is not a covalent bond, but instead is classified as a strong ...
Figure 1. Example of salt bridge between amino acids glutamic acid and lysine demonstrating electrostatic interaction and hydrogen bonding. In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding (Figure 1).
Electrostatic attraction is not the only component of cation–π bonding. For example, 1,3,5-trifluorobenzene interacts with cations despite having a negligible quadrupole moment. While non-electrostatic forces are present, these components remain similar over a wide variety of arenes, making the electrostatic model a useful tool in predicting ...
The bond then results from electrostatic attraction between the positive and negatively charged ions. Ionic bonds may be seen as extreme examples of polarization in covalent bonds. Often, such bonds have no particular orientation in space, since they result from equal electrostatic attraction of each ion to all ions around them.
What is more commonly observed (see figure to the right) is either a staggered stacking (parallel displaced) or pi-teeing (perpendicular T-shaped) interaction both of which are electrostatic attractive [2] [3] For example, the most commonly observed interactions between aromatic rings of amino acid residues in proteins is a staggered stacked ...
For a given cation, Pauling defined [2] the electrostatic bond strength to each coordinated anion as =, where z is the cation charge and ν is the cation coordination number. A stable ionic structure is arranged to preserve local electroneutrality , so that the sum of the strengths of the electrostatic bonds to an anion equals the charge on ...
Both electrostatic mapping and molecular orbital explanation for chalcogen bonding result in a predicted directionality for the bonding interaction. In a hydrogen or halogen bond, the electrophilic region/σ* orbital are located opposite the σ bond, forming a single σ-hole. Optimal hydrogen or halogen bonds thus are linear in geometry.
Electrostatic interactions, hydrogen bonds, van der Waals forces, and hydrophobic interactions are all known to be involved depending on the interaction sites. [7] [8] Non-covalent bonds between antibody and antigen can also be mediated by interfacial water molecules. Such indirect bonds can contribute to the phenomenon of cross-reactivity, i.e ...