Search results
Results from the WOW.Com Content Network
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables, whereas ratio and interval measurements are grouped together as quantitative variables, which can be either discrete or continuous, due to their numerical nature.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]
Scales constructed should be representative of the construct that it intends to measure. [6] It is possible that something similar to the scale a person intends to create will already exist, so including those scale(s) and possible dependent variables in one's survey may increase validity of one's scale.
Responses to several Likert questions may be summed providing that all questions use the same Likert scale and that the scale is a defensible approximation to an interval scale, in which case the central limit theorem allows treatment of the data as interval data measuring a latent variable.
If the first independent variable is a categorical variable (e.g. gender) and the second is a continuous variable (e.g. scores on the Satisfaction With Life Scale (SWLS)), then b 1 represents the difference in the dependent variable between males and females when life satisfaction is zero. However, a zero score on the Satisfaction With Life ...
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
Indexes and scales should provide an ordinal ranking of cases on a given variable, though scales are usually more efficient at this. [3] [4] While indexes are based on a simple aggregation of indicators of a variable, scales are more advanced, and their calculations may be more complex, using for example scaling procedures such as semantic ...