Search results
Results from the WOW.Com Content Network
The above -sphere exists in (+) -dimensional Euclidean space and is an example of an -manifold. The volume form ω {\displaystyle \omega } of an n {\displaystyle n} -sphere of radius r {\displaystyle r} is given by
The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1-sphere S 1 is a circle. [2] Disk with collapsed rim: written in topology as D 2 /S 1; This construction moves from geometry to pure topology.
For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...
More generally, in n-dimensional space n−1 first-degree equations in the n coordinate variables define a line under suitable conditions. In more general Euclidean space , R n (and analogously in every other affine space ), the line L passing through two different points a and b is the subset L = { ( 1 − t ) a + t b ∣ t ∈ R ...
This is the same as Euclid's method of treating point and line as undefined primitive notions and axiomatizing their relationships. Great circles in many ways play the same logical role in spherical geometry as lines in Euclidean geometry, e.g., as the sides of (spherical) triangles.
The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry : a homogeneous space G / H where G = SO( n + 1, 1) acting on the ( n + 2) -dimensional Lorentzian space R n +1,1 and H is the isotropy group of a fixed null ray in the light cone .
A straight line in the plane is an obvious example of isoparametric manifold. Any affine subspace of the Euclidean n-dimensional space is also an example since the principal curvatures of any shape operator are zero. Another simplest example of an isoparametric manifold is a sphere in Euclidean space. Another example is as follows.
A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...