enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The above ⁠ ⁠-sphere exists in ⁠ (+) ⁠-dimensional Euclidean space and is an example of an ⁠ ⁠-manifold. The volume form ⁠ ω {\displaystyle \omega } ⁠ of an ⁠ n {\displaystyle n} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ is given by

  3. Homotopy groups of spheres - Wikipedia

    en.wikipedia.org/wiki/Homotopy_groups_of_spheres

    The same idea applies for any dimension n; the equation x 2 0 + x 2 1 + ⋯ + x 2 n = 1 produces the n-sphere as a geometric object in (n + 1)-dimensional space. For example, the 1-sphere S 1 is a circle. [2] Disk with collapsed rim: written in topology as D 2 /S 1; This construction moves from geometry to pure topology.

  4. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...

  5. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    More generally, in n-dimensional space n−1 first-degree equations in the n coordinate variables define a line under suitable conditions. In more general Euclidean space , R n (and analogously in every other affine space ), the line L passing through two different points a and b is the subset L = { ( 1 − t ) a + t b ∣ t ∈ R ...

  6. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    This is the same as Euclid's method of treating point and line as undefined primitive notions and axiomatizing their relationships. Great circles in many ways play the same logical role in spherical geometry as lines in Euclidean geometry, e.g., as the sides of (spherical) triangles.

  7. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    The n-dimensional model is the celestial sphere of the (n + 2)-dimensional Lorentzian space R n+1,1. Here the model is a Klein geometry : a homogeneous space G / H where G = SO( n + 1, 1) acting on the ( n + 2) -dimensional Lorentzian space R n +1,1 and H is the isotropy group of a fixed null ray in the light cone .

  8. Isoparametric manifold - Wikipedia

    en.wikipedia.org/wiki/Isoparametric_manifold

    A straight line in the plane is an obvious example of isoparametric manifold. Any affine subspace of the Euclidean n-dimensional space is also an example since the principal curvatures of any shape operator are zero. Another simplest example of an isoparametric manifold is a sphere in Euclidean space. Another example is as follows.

  9. Ball (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ball_(mathematics)

    A ball in n dimensions is called a hyperball or n-ball and is bounded by a hypersphere or (n−1)-sphere. Thus, for example, a ball in the Euclidean plane is the same thing as a disk, the area bounded by a circle. In Euclidean 3-space, a ball is taken to be the volume bounded by a 2-dimensional sphere. In a one-dimensional space, a ball is a ...