Search results
Results from the WOW.Com Content Network
The gene affected is the HPD gene encoding 4-hydroxyphenylpyruvic acid dioxygenase, on chromosome 12q24. [4] It is unusual in that most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
HPPD is an enzyme that usually bonds to form tetramers in bacteria and dimers in eukaryotes and has a subunit mass of 40-50 kDa. [7] [8] [9] Dividing the enzyme into the N-terminus and C-terminus one will notice that the N-terminus varies in composition while the C-terminus remains relatively constant [10] (the C-terminus in plants does differ slightly from the C-terminus in other beings).
Tyrosinemia type III is a rare disorder caused by a deficiency of the enzyme 4-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27), encoded by the gene HPD. [2] This enzyme is abundant in the liver, and smaller amounts are found in the kidneys. It is one of a series of enzymes needed to break down tyrosine.
4-Hydroxyphenylpyruvic acid (4-HPPA) is an intermediate in the metabolism of the amino acid phenylalanine. The aromatic side chain of phenylalanine is hydroxylated by the enzyme phenylalanine hydroxylase to form tyrosine. The conversion from tyrosine to 4-HPPA is in turn catalyzed by tyrosine aminotransferase. [2]
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is an enzyme found in both plants and animals, which catalyzes the catabolism of the amino acid tyrosine. [4] Preventing the breakdown of tyrosine has three negative consequences: the excess of tyrosine stunts growth; the plant suffers oxidative damage due to lack of tocopherols (vitamin E); and ...
Alkaptonuria is a genetic disease that results in a deficiency of homogentisate 1,2-dioxygenase, which is responsible for catalyzing the formation of 4-maleylacetoacetate from homogentisate. [21] Buildup of homogentisic acid can result in heart valve damage, kidney stones and damage to cartilage in the body. [22]
In addition to the common amino acid L-tyrosine, which is the para isomer (para-tyr, p-tyr or 4-hydroxyphenylalanine), there are two additional regioisomers, namely meta-tyrosine (also known as 3-hydroxyphenylalanine, L-m-tyrosine, and m-tyr) and ortho-tyrosine (o-tyr or 2-hydroxyphenylalanine), that occur in nature.
This biochemistry article is a stub. You can help Wikipedia by expanding it.