enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In uncurved space-time, far from a source of gravity, these geodesics correspond to straight lines; however, they may deviate from straight lines when the space-time is curved. The equation for the geodesic lines is [10] + = where Γ represents the Christoffel symbol and the variable q parametrizes the particle's path through space-time, its so ...

  3. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The speed of the planet in the main orbit is constant. Despite being correct in saying that the planets revolved around the Sun, Copernicus was incorrect in defining their orbits. Introducing physical explanations for movement in space beyond just geometry, Kepler correctly defined the orbit of planets as follows: [1] [2] [5]: 53–54

  4. n-body problem - Wikipedia

    en.wikipedia.org/wiki/N-body_problem

    The planetary problem is the n-body problem in the case that one of the masses is much larger than all the others. A prototypical example of a planetary problem is the Sun–Jupiter–Saturn system, where the mass of the Sun is about 1000 times larger than the masses of Jupiter or Saturn. [18]

  5. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  6. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    As for instance, if the body passes the periastron at coordinates = (), =, at time =, then to find out the position of the body at any time, you first calculate the mean anomaly from the time and the mean motion by the formula = (), then solve the Kepler equation above to get , then get the coordinates from:

  7. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Subsequent observations of the planetary orbits showed that the long axis of the ellipse (the so-called line of apsides) rotates gradually with time; this rotation is known as apsidal precession. The apses of an orbit are the points at which the orbiting body is closest or furthest away from the attracting center; for planets orbiting the Sun ...

  8. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    In this example the time measured in the frame on the vehicle, t, is known as the proper time. The proper time between two events - such as the event of light being emitted on the vehicle and the event of light being received on the vehicle - is the time between the two events in a frame where the events occur at the same location.

  9. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    Compute the time-of-flight from the eccentric anomaly ; Finding the eccentric anomaly at a given time (the inverse problem) is more difficult. Kepler's equation is transcendental in , meaning it cannot be solved for algebraically.